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On the Optimal Location of Vibration Supports

B. P. Wang, W. D. Pilkey
University of Virginia

ABSTRACT

The problem of optimal positioning of vibration supports to
raise the fundamental natural frequency of a system is studied. It
is established that for the otimal locations criterion the
corresponding lowest antiresonant frequency is a maximum. A numerical
example illustrates this criterion.

1. Introduction

Intermediate supports are often introduced in engineering structures
to increase the resonant frequencies of the system as well as to support
weights. These supports, when realized by actual structural components,
are elastic supports. Thus, the problem of designing vibration supports
to raise the fundamental frequency involves both finding the location
and the required stiffness of the supports.

In an earlier paper, Bezler and Curreri [1] studied the design
of vibration supports for piping systems. They used the transfer
matrix method to study a spring supported cantilever beam and a spring
supported "L" bend. They found the optimum spring location, i.e.,
the most effective location to put a spring to increase the fundamental
frequency, from numerical experimentation. They concluded that a "near
optimal" position for a flexible spring is at a node of the second
mode. For a rigid support this would be the optimal location.

In the present paper, a criterion for selecting the optimal spring
locations will be derived. This criterion can also be used to compare
the relative effectiveness of sets of proposed support locations.

2. Problem Formulation

For a multiple-degree-of-freedom, undamped system with a spring
introduced at dof J, the frequency equation is

1(1
+ Rjj (w) - 0

where R j(w) is the receptance of dof J. Equation (1) can be

derived using the receptance method [2]. Alternatively, it can be

found by considering the addition of a spring to a system as a local

modification (3,4.5]. The receptance RJJ(w can be expressed in modal

summation form as
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where w is the natural frequency of the 1th mode of the unsupported

system. (p ( is the corresponding eigenvector, p i is the Jth
component of (Ap1 . and G, - (Pp (ml(P1  is the generalized mass of the

fth mode. Thus. for any given spring rate k. Eq. (1) along with Eq. (2)
can be used to solve for the new frequencies w. The natural frequen-
cies of the supported system increase as the soring rate increases.
In the limit, as k approaches infinity, i.e.. as the support becomes ideally
rigid, the frequency equation becomes

R j(W) - 0 (3)

(J)(J Accessi, o
Denote the lowest w that satisfies Eq. (3) as a Then a For

is the lowest antiresonant frequency of dof J. That is. a(J ) is the N

highest fundamental frequency achievable when the support at dof J DToC TA

becomes rigid. It follows from the eigenvalue separation property J4ti -

(6]. that a(J  C "2" where 12 is the second natural frequency of the -.-

unsupported system. 
Thus, by choosing 

dof J for a rigid 
support as L I

a node in the second mode of the unsupported system, we have a -

(A) which is the maximum obtainable fundamental frequency. This Aail3_h It

result has been known for some time [1, A ,

Now consider the case of introducing s springs at dof J iJ2... s. _

Pollowing the procedure of Ref. 5. the frequency equation of the .

supported system is given by

A
det(fI] + (R][&K)) - 0 (4)

where rI] is an sxs identity matrix

[R] is the receptance matrix associated with the dof
1 , 2 s

A
R -R (5)

k
I

-a 

k

.~(AK2 - an sxs diaaonal matrix

Ak

4ki is the spring rate of the support at dof J.



In the limitina case when all k- . Eq. (4) becomes

det(R3 - 0 (6)

Let A S be the lowest root of Eq. (6). Then the optimal support
(J

locations will be where a s is a maximum. We are now in a oosition
to establish a criterion for optimal support locations.

3. Maxim= Antiresonant Frequency Criterion

For given sets of support locations, the best set of
locations is where the correspondina lowest antiresonant
frequency is a maximum.

We will call this criterion the Maximum Antiresonant Frequency
Criterion (MAFC). To find the antiresonant frequency. one can either
solve an eigenvalue problem of order (n-s) or solve the nonlinear Eq. (6).

4. Numerical Example

To illustrate the basic contention of the MAFC criterion.
consider the simply supported beam of Fig. 1. The fundamental
frequency of this beam is 15.71 Hz. It is desired to introduce two
intermediate supports to increase the fundamental natural frequency
to above 25 Hz. For this example it is practical to restrict the
support locations to two possible sets of positions, say
A IxI - .1L, - 0.5L) and B (xI = 0.34L, x2  0 0.67LI.

For this case with two suoports, we have

AK I  0

A (6)

ad0 AK2 I
and2J
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11 12
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It is convenient to calculate the elements R.. with a modal
sumation. Thus. 3.

AR -

n p1 (x 1 )p1 (x2 )

-.. G ((j 2
W 2) (8 .



L = 2.54m (100 in.)

E - 69 GPa (10' psi)

P = 8748.73 - (0.01 lb-sec 
2

I - 4.1623x10- 6 m (10 in. 4

Figure 1 A simply supported beami



where, for a simply supported beam.

P (x I ) = sin L

G - 1/2 pLI

Wt L2 P

In the numerical calculation n - 20 is used. or. in other words. 20
modes are used to evaluate the receptances in Eq. (8). The
frequency determinant of Eq. (6) gives

(Al
f A - fundamental natural freqency for rigid supports at

x, - O.lL. x 2 - 0.5L

70.9 HZ

f ( - fundamental natural frequency for rigid supports at
x, - 0.34L. x2 - 0.67L

180.1 Hz

(B) (A)
since f I fI . we conclude that the location pair B is more

effective than location petr A in raising the fundamental frequency

of the system.

To check the above proposition, we will compute the fundamental

frequencies of the spring supported beam for the special case of equal

spring rates. The resuls are summarized in Table 1. Alternatively,we

can comoute the required (equal) spring rates for both springs for

given iundamental frequencies. The results are summarized in Table 2.

We observe that to raise the fundamental frequency above 25 Hz,

springs with rates of about 1.23 x 106 N/m (7000 lb/in) are needed at

location x - O.lL and - 0.5L, while less stiff springs with rates

of 0.88 x 106 N/m (5000 lb/in) are needed if they are located at x-

0.34L, x - 0.67L.
2
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Table 1

Natural Frequencies for Simply Sui~o2ted Beam with Two Equal

Intermediate Springs

Spring Fundamental Natural Frequency of the

Stiffness Supported System (Hz)

N/ (lb/in.) - 0.1L. - 50 - 34. x 2 - 0.67L

17513 (100) 15.88 15.95

87565 (500) 16.67 16.88

175130 (1000) 17.38 17.98

350268 (2000) 18.90 20.00

525390 (3000) 20.30 21.81

700520 (4000) 21,61 23.48

875650 (5000) 22.82 25.05

1751300 (10.000) 28.07 31.72

CO 76.9 180.1

Table 2

Required Spring Rate to Achieve Prescribed Natural Frequency

Fundamental Required Spring Stiffness (lb/in) for Springs at

Natural Xl - 0.1L. x - 0.5L x - 0.34L. x " 0.67L
Frequency (Hz') 1I 2 (bil 2 NS2 b/nN/rn (lIb/in) N/rn (lIb/in

16 29238 (166.95'. 21220.5 121.17
17 133608 (762.91) 968962.7 553.09
18 244632 (1396.86) 177135 1011.45
19 362386 (2069.24) 262047 1496.3
20 486935 (2780.42) 351610 2007.71
25 1214360 (6934.07) 869482 4964.78
30 2125640 (12137.50) 1505170 8594.61

.



5. Conclusion

In summary. a simole criterion has been derived that will allow a
desianer to choose the optimal locations for placina vibration
supoorts. This will narrow the design problem to that of determining

the recuired stiffness to achieve a desired fundamental natural
frecuency.
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